Hydrogen embrittlement of grain boundaries in nickel: an atomistic study
نویسندگان
چکیده
The chemomechanical degradation of metals by hydrogen is widely observed, but not clearly understood at the atomic scale. Here we report an atomistic study of hydrogen embrittlement of grain boundaries in nickel. All the possible interstitial hydrogen sites at a given grain boundary are identified by a powerful geometrical approach of division of grain boundary via polyhedral packing units of atoms. Hydrogen segregation energies are calculated at these interstitial sites to feed into the Rice–Wang thermodynamic theory of interfacial embrittlement. The hydrogen embrittlement effects are quantitatively evaluated in terms of the reduction of work of separation for hydrogen-segregated grain boundaries. We study both the fast and slow separation limits corresponding to grain boundary fracture at fixed hydrogen concentration and fixed hydrogen chemical potential, respectively. We further analyze the influences of local electron densities on hydrogen adsorption energies, thereby gaining insights into the physical limits of hydrogen embrittlement of grain boundaries.
منابع مشابه
Chemomechanical Origin of Hydrogen Trapping at Grain Boundaries in fcc Metals.
Hydrogen embrittlement of metals is widely observed, but its atomistic origins remain little understood and much debated. Combining a unique identification of interstitial sites through polyhedral tessellation and first-principles calculations, we study hydrogen adsorption at grain boundaries in a variety of face-centered cubic metals of Ni, Cu, γ-Fe, and Pd. We discover the chemomechanical ori...
متن کاملGrain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials
The feasibility of using ‘‘grain-boundary engineering” techniques to reduce the susceptibility of a metallic material to intergranular embrittlement in the presence of hydrogen is examined. Using thermomechanical processing, the fraction of ‘‘special” grain boundaries was increased from 46% to 75% (by length) in commercially pure nickel samples. In the presence of hydrogen concentrations betwee...
متن کاملEmbrittlement of metal by solute segregation-induced amorphization.
Impurities segregated to grain boundaries of a material essentially alter its fracture behavior. A prime example is sulfur segregation-induced embrittlement of nickel, where an observed relation between sulfur-induced amorphization of grain boundaries and embrittlement remains unexplained. Here, 48x10(6)-atom reactive-force-field molecular dynamics simulations provide the missing link. Namely, ...
متن کاملThe Effect of Impurity Elements on Chemical Bonding at Grain Boundaries
Impurity elements, which have very low bulk concentrations in metals, often segregate to grain boundaries where their concentrations can be greatly enriched. As a results of this segregation, the grain boundaries are often weakened so that they become preferred paths for brittle fracture. This paper presents the results of fully quantum mechanical cluster calculations which have been applied to...
متن کاملHydrogen-induced intergranular failure in nickel revisited
Using a combination of high-resolution scanning and transmission electron microscopy, the basic mechanisms of hydrogen-induced intergranular fracture in nickel have been revisited. Focused-ion beam machining was employed to extract samples from the fracture surface to enable the examination of the microstructure immediately beneath it. Evidence for slip on multiple slip systems was evident on t...
متن کامل